
The mean velocities and densities were 1507 m/sec and 2752 kg/m 3 for VUI and 1108 m/ 
sec and 2386 kg/m 3 correspondingly for VU2. 

NOTATION 

z) symmetry axis; r) radial coordinate; p) density; p) pressure; U) mass velocity along 
z coordinate; V) mass velocity along z; E) energy; D) detonation speed; ~) exponential coef- 
ficient; t) working time; ~) time segment. Subscripts denoting parameters: i) number of 
working cells along z; j) number of working cells along r; n) time step number; f) flow, 
af) approximation factor; a) activation; ip) initial powder parameters; e) explosive. A bar 
above a symbol denotes the dimensionless form. 
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MECHANISM AND FUNCTIONAL RELATIONS CHARACTERIZING 

THE INFLUENCE OF AMBIENT NOISE ON THE VITRIFICATION 

OF GLASS-FORMING SEMICONDUCTOR MELTS 

M. I. Mar'yan and V. V. Khiminets UDC 536.75 

The influence of a random temperature field applied to a melt during the cool- 
ing process on the structure and properties of disordered materials is investi- 
gated. The functional relations established in the study are explained on the 
basis of the microinhomogeneous structure of the melts and the strongly non- 
linear behavior of internal fluctuations in transition to the nonequilibrium 
state. 

We have previously [1-4] proposed a synergetic approach to the study of vitrification 
processes during the cooling of melts of glass-forming semiconductors, based on allowance 
for the highly nonlinear dynamics of the internal fluctuations of the system (fluctuations 
of the fraction of atoms in fluidlike stats and of the rms atomic displacements). These 
random fluctuations are insignificant under cooling conditions q < qc (qc is the critical 
cooling velocity [i]), but are intensified outside the domain of stability of the equilib- 
rium crystalline state (q e qc), so that the mean fluctuation levels exhibit appreciable 
macroscopic variations [1-3]. However, the parameters describing a glass-forming melt dur- 
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ing cooling vary as a result of mutual heat transfer with the environment and are therefore 
fluctuating quantities as well. These fluctuations can be controlled and treated as "ambi- 
ent noise." Environmental fluctuations, for example, variations of the cooling rate of the 
melt, can affect vitrification and, more important, can generate qualitatively new nonequi- 
librium transitions, which are unpredictable within the framework of deterministic laws 
governing the evolution of the melt. In the present article we discuss aspects of the influ- 
ence of ambient noise on the way in which vitrification of the melts take place. 

The formation of a vitreous structure can be modeled by a bifurcation process, which is 
characterized by the solution of the nonlinear differential equation [i] 

at - -  a-7' - - - 3  ~ + 4 " T ( v n )  ~ ,  ( 1 )  

where x is the space coordinate, and q is the deviation of the system from the equilibrium 
state, which corresponds to zero variation of ~(t) (the parameter q is interpreted as the 
deviation of the fraction of atoms of the nonequilibrium system in fluidlike, or amorphized, 
states from the fraction of such atoms in the equilibrium system); the control parameter of 
the system in the cooling process can be approximated by the expression [I] X = aq, a > 0, 

= (q - qc)/qc. The deterministic equation of motion for the parameter q has the following 
form on the basis of Eq. (I), ignoring spatial fluctuations: 

a..~ = ~ (~9 + ~ ('n), ,~ (n) = ~, ~ 09 = "en = -  P,~. 
Ot 

(2) 

We assume that an external random temperature field gt of intensity o acts on the sys- 
tem, i.e., on the vitreous melts during cooling. We examine the behavior of the system when 
the fluctuations relative to the mean cooling rate are fast enough that the Gaussian white 
noise approximation can be used [i], i.e., we assume that %t = X + a$ t. In this case the 
basic equation (2) reduces to a stochastic differential equation, which is written as fol- 
lows in Stratonovich's interpretation: 

&] (t) = (%~ +V,q~--~q ~) dt+~qdWt. (3) 

Here dW t = $1dt denotes stationary increments of the random variable ~t, and the evolution 
of the probability density function P(q, t) of q is given: 

a,P(n, t) On ~ _ F v ~ 3 ~ _ . _ 6 n ~ +  - ~  p(~, t) ~ a~n2p(~, t). (4) 

The stationary density function Ps(q), for which 8tP(q, t) = 0 and the behavior of the sys- 
tem relaxes to the steady state, is given by the functional relation 

f 1 ' )  (~(IL)+h(u) &~= N,q~_texp - - 1 q  ~-'q~ (5)  P~ (~3) = ~.~-~ 0t) exp ,~ ~2 (t 0 , c~z - -  " 

Here N is a normalization factor, which is evaluated on the basis of the normalization condi- 

tion .[ Ps (~)dq-- t: 
0 

~, ~v ..~ /o '~ %~' / ~ ~. ~, .__% 

O 
r ~ ~ T J  ' (6) 

where s is the gamma function. It follows from Eqs. (5) and (6) that the function Ps(q) 
is integrable on the interval (0, I), i.e., steady-state solutions exist only if 2X/o 2 - 
1 > i or k > 0 (q > qc)" For ~ < 0, which is equivalent to q < 0 and q < qc, the density 
function (5) behaves like a delta function when the expression for N is taken into account. 

The extreme of the stationary density function Ps(q) correspond to macroscopic nonequi- 
librium steady states of the system, and the qualitative change in the form of Ps(q) as a 
function of the control parameter and noise intensity o serves as an indicator of transition. 
The equation used to determine the extrema of the stationary density function (5) has the 
form 
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Fig. i. Behavior of the stationary density function of fluid- 
like zones of a nonequilibrium system at fixed noise intensi- 
ties. a) q = 1.0; b) q = 0.5; dashed curve) q < O; i) o 2 = 
0.6 [xlO -4 (K/sec2]; 2) 1.0; 3) 1.4. 

(7) 

and its solutions are given by the relations 

The roots ~2,3 exist for I > 02/2 - 72/4~ and always correspond to a maximum of Ps(n), where- 
as ql corresponds to a maximum of Ps(q) only for 0 < I < 02/2 [positive values of the devia- 
tion of the internal parameter of the system from the equilibrium state have physical signi- 
ficance, and so we shall analyze the curve of extrema of Ps(~) for q > 0]. Consequently, 
when the melt is subjected to a random temperature field during cooling, qualitatively dif- 
ferent transitions to the glassy state are possible. The transition for o = 0 and i = 0 
corresponds to the deterministic case (q = qc). The transition for o ~ 0 and X = 02/2 is 
accompanied by an abrupt change in the form of the density function, the deltaform distribu- 
tion Ps(q) spreading toward nonzero value of q. 

The behavior of the stationary density function of the deviation of the fraction of 
atoms in fluidlike (amorphized) states from their equilibrium values as a function of the 
ambient noise intensity is shown in Figs. i and 2 (the calculations are carried out for 
~/~ = 0.ii and a/~ = 0.099 [i]). The density function exhibits the following characteris- 
tics. If the cooling rate of the melt is below critical (X < 0), the stationary point q = 0 
corresponding to the crystalline state is asymptotically stable [in which case the distribu- 
tion Ps(q) behaves like a delta function, as represented by the dashed line in Fig. Ib]. In 
the presence of ambient noise and for a control parameter 0 < I < 02/2 the stationary den- 
sity function becomes infinite in the limit q + O, i.e., some of the properties of the delta 
function are retained, and q = 0 is still the most probable value (Fig. ib), but it is no 
longer a stable stationary point. In this case, therefore, we have a transition to a par- 
tially disordered state, which relaxes to the equilibrium state in the limit t + ~; the for- 
mation of a nonequilibrium structure is also possible, since Ps(q) ~ 0 for q ~ O, but is it 
not asymptotically stable. In other words, the random temperature field has a disorganizing 
effect on the meltduring cooling, partially disrupting the self-consistent interaction of 
the subsystems [2, 3]. If X = 02/2, the nature of the distribution again changes abruptly: 
Even though a nonzero density function Ps(q) exists for q = O, the most probable value of 
Ps(q) occurs for q ~ O, for example, as represented by curve 2 in Fig. lb. For X > 02/2 the 
probability of the formation of a crystal-like structure tends to zero (Fig. la), and a dis- 
tinct.nonzero extremal value of Ps(q) is observed. The dependence of the extrema of Ps(q) 
on q can be regarded as a very specific modification of the deterministic bifurcation dia- 
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Fig. 2. Extrema of the stationary density 
function Ps(~) vs cooling rate ~ at fixed 
noise intensities. I) 02 = 0; 2) 0.2 [• -4 
(K/sec)2]; 3) 0.6; 4) 1.0; 5) 1.4. q, K/sec. 

gram (Fig. 2, curve i), for which the curve q(q) is observed to shift with respect to q by 
the amount 02/2 (Fig. 2, curves 2-5). 

The above-described behavior of the distribution Ps(q) leads to the following conclu- 
sion: Transition can be instigated in a glass-forming semiconductor melt during cooling by 
maintaining a constant mean cooling rate, but increasing or decreasing the intensity of the 
fluctuations of the environmental temperature field. Knowledge of only one mean state of 
the medium is insufficient for predicting the macroscopic behavior of the system. Indeed, 
for a fixed mean cooling rate, when ~ > o2/2, we have Ps(0) = 0, the function Ps(0) remains 
finite for k = 02/2, and Ps(0) § ~ for ~ < 02/2, i.e., the transition to a vitreous struc- 
ture vanishes. Another distinct feature of noise-induced transitions, in contrast with the 
deterministic case, is the possible existence of a set of values of q and, accordingly, the 
existence of spatially disordered structures with different ordering zones. 

Thus, the proposed approach can be used to calculate the critical parameter fluctua- 
tions for which the structure characterized by synthesized vitreous materials remain invari- 
ant as their production conditions vary, and also to predict the formation of qualitatively 
new structures at certain noise intensities. 

NOTATION 

q, cooling rate; St, random temperature field; o, intensity of external temperature 
field; ~, Lyapunov functional; t, time; P(q, t), probability density function of q- 
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